Strona główna ] W górę ] RWE - mp3 ] Grundig Yacht Boy 80 ] Dobroć, a tłumienie w paśmie zaporowym obw. rezonansowego ] PSK jako następca CW ] Częstotliwości harmoniczne w stopniu przemiany ] [ Impedancja wejściowa linii długiej ] SWR, a straty w linii ] Przekształcenie dipola ] Magik LC ] Tłumik PI ] Radiotechnika KF - Programy ] Radio - Humor ]

Impedancja wejściowa linii długiej

Wstęp - Linia bezstratna - Linia stratna - Wnioski ogólne - Podsumowanie

Przedstawiam analizę wartości modułu impedancji wejściowej |Zwe| linii długiej o impedancji falowej Z0 w zależności od impedancji końcowej Zk linii (np. anteny) oraz jej długości x (rys.1).

Rys.1. Schemat zasilania impedancji końcowej Zk przez linię długą [1].

Wyrażenie określające impedancję wejściową układu z rysunku 1 przedstawia się następująco [1]:

    (1)

gdzie x jest odległością w metrach badanych zacisków wejściowych od końca linii oraz

    (2)

    (3)

Wzór (3) przedstawia stałą propagacji w linii długiej. Wyraża ona tłumienie oraz "efekty" fazowe w linii.

Jak widać, linię długą można przedstawić jedynie przy pomocy 4 parametrów:

R - rezystancja jednostkowa [ohm/m],
G - upływność jednostkowa [S/m],
L - indukcyjność jednostkowa [H/m],
C - pojemność jednostkowa [F/m].

A jak ma się wzór (1) do praktyki?

Przede wszystkim warto zauważyć, że przy Zk=Z0 wyrażenie (1) przekształca się do postaci

    (4)

Zatem impedancja wejściowa układu zależy wtedy jedynie od impedancji falowej linii. Nie zależy natomiast od takich czynników jak długość linii, jej tłumienia, "jakości kabla" itd. Jak się dalej okaże, równość jedynie modułów |Zk|=|Z0| nie jest wystarczającym warunkiem na uzyskanie związku (4) - może to być jedna z przyczyn "wojny" pomiędzy zwolennikami i przeciwnikami "przycinania kabla".

Linia bezstratna

Wstęp - Linia bezstratna - Linia stratna - Wnioski ogólne - Podsumowanie

W dalszych rozważaniach zakładam przykładową częstotliwość sygnału 30MHz. Przyjmuję hipotetyczny kabel o parametrach:

R=0 ohm/m; L=250 nH/m; G=0 S/m i C=100 pF/m

Mamy więc bezstratny kabel o Z0=50ohm i typowych wartościach L i C.

Po obciążeniu go impedancją Zk=50ohm otrzymujemy następujący przebieg |Zwe(x)|:

Rys.2. |Zwe(x)| przy Zk=Z0=50ohm przy zerowych stratach w linii (R=0 ohm/m; L=250 nH/m; G=0 S/m i C=100 pF/m).

Zgodnie z wcześniejszym spostrzeżeniem otrzymaliśmy stałą wartość impedancji wejściowej. Naruszmy teraz warunek Zk=Z0. Niech np. będzie Zk=100ohm (rys.3).

Rys.3. |Zwe(x)| przy Zk=100ohm. Parametry linii: bezstratna, Z0=50ohm; R=0 ohm/m; L=250 nH/m; G=0 S/m i C=100 pF/m.

Oczywiście przy zerowej odległości zacisków wejściowych od końca linii (x=0) otrzymujemy łatwą do przewidzenia wartość Zwe=Zk=100ohm. Przy zwiększaniu x zmniejsza się |Zwe|. Podobnie zachowuje się linia długa rozwarta na końcu - również mamy zmniejszanie się |Zwe|. Przy dalszym zwiększaniu x mamy oscylacje |Zwe| co pół fali w przewodzie, które pozwalają na wyznaczenie wsp. skrócenia (ok. 0,68). Zasadniczym spostrzeżeniem są granice tych oscylacji - wg. rysunku 3 są to wartości impedancji od 25 do 100ohm. A więc w tym przypadku mamy zachowany warunek

    (5)

Czyli wskazanie umieszczonego na wejściu linii reflektometra nigdy nie przekroczy wartości rzeczywistego SWR.

Można przyjąć ekstrema lewej strony powyższej nierówności (obwiednia analizowanych przebiegów) za rzetelną metodę pomiaru SWR (nierówność 5 zamienia się wtedy w równanie).

Dobierając długość przewodu (skracanie lub wydłużanie) możemy tu tylko poprawić sytuację, czyli przybliżyć Zwe do Z0, a więc zmniejszyć wartość "fikcyjnego SWR", zmierzonego przy nadajniku.

Podkreślam, że aspekt zmiany długości przewodu, dotyczy jedynie Zwe względnie |Zwe|, bo rzeczywisty SWR występujący w bezstratnej linii długiej zależy tylko od stosunku Zk/Z0 (na rys.3 jest w każdym punkcie linii SWR=2).

Zobaczmy co się stanie, jeśli zwiększę Zk do wartości np. 500ohm (rys.4).

Rys.4. |Zwe(x)| przy Zk=500ohm. Parametry linii: bezstratna, Z0=50ohm; R=0 ohm/m; L=250 nH/m; G=0 S/m i C=100 pF/m.

W celu dokładniejszego sprawdzenia minimalnych wartości |Zwe|, powiększam pierwsze minimum:

Rys.5. |Zwe(x)| przy Zk=500ohm - powiększenie fragmentu rys.4. Parametry linii: bezstratna, Z0=50ohm; R=0 ohm/m; L=250 nH/m; G=0 S/m i C=100 pF/m.

Otrzymaliśmy zakres oscylacji |Zwe| od 5 do 500 ohm. Potwierdza się zatem wyrażenie (5). Teraz zmniejszam Zk do 25ohm:

Rys.6. |Zwe(x)| przy Zk=25ohm. Parametry linii: bezstratna, Z0=50ohm; R=0 ohm/m; L=250 nH/m; G=0 S/m i C=100 pF/m.

Tu również granice oscylacji |Zwe| to 25-100ohm i potwierdza się (5).

Dotychczas przyjmowałem R=0 i G=0, czyli przypadek linii bezstratnej. Przyjęte wartości R i G powodowały, że impedancja falowa linii długiej miała charakter wyłącznie rezystancyjny (bez składowej urojonej). Jako Zk przyjmowałem również rezystancję. Zatem równość |Zk|=|Z0| była równoważna ogólnej Zk=Z0, która w prosty sposób wyjaśniała wykres linii prostej na rysunku 2.

Przyjmijmy teraz na przykład Zk=30+j40 ohm, co jest przy 30MHz równoważne szeregowemu połączeniu Rk=30ohm i Lk=212nH. W dalszym ciągu mamy |Zk|=50ohm, czyli spełniony warunek |Zk|=|Z0|. Niestety nie jest spełniona równość Zk=Z0, zatem o linii prostej mowy być nie może (rys.7).

Rys.7. |Zwe(x)| przy Zk=30+j40 ohm, |Zk|=Z0=50ohm, ale Zk!=Z0, przy zerowych stratach w linii (R=0 ohm/m; L=250 nH/m; G=0 S/m i C=100 pF/m).

Mamy tu SWR ok. 3. Podobny jak na rys.7 przypadek, wystąpi przy nierezystancyjnym charakterze Z0 i rezystancyjnym Zk.

Z dotychczasowych symulacji wynika, że w praktyce niedopasowanie argumentów jest bardziej niepożądane od niedopasowania modułów, gdyż trudniej jest je kontrolować, a skutki mogą być jednakowo opłakane ;) W szczególności nie zalecam załączania na końcu linii długiej kondensatora o |XC| = |Z0|, bo wtedy przy urojonym obciążeniu zawsze będzie SWR = inf (odbicie fali w 100%).

Jednak jak dalej pokażę, strojenie anteny polega właśnie na realizacji równości Zk=Z0 (jednoczesne dopasowanie argumentów i modułów).

Trzeba zaznaczyć, że warunek Z0=R0 występuje zawsze w linii bezstratnej. Dla linii tej

    (6)

Dla stratnej warunek Z0=R0 ma miejsce przy

    (7)

W obydwu powyższych przypadkach mamy do czynienia z tzw. linią nie zniekształcającą, zdolną do wiernego przenoszenia sygnałów impulsowych np. danych cyfrowych. W celu osiągnięcia (7), często stosuje się sztuczne zwiększenie jednostkowej L, a czynność ta nosi nazwę pupinizacji linii (nie dotyczy omawianej tu techniki antenowej). Jednak dalej pokażę, że przy dostatecznie małych wartościach R i G, zależność (7) nie musi być spełniona.

Linia stratna

Wstęp - Linia bezstratna - Linia stratna - Wnioski ogólne - Podsumowanie

Wprowadźmy teraz tłumienie linii równe

4,3 dB/100m

Przy założeniu linii nie zniekształcającej (Z0=R0) daje to

R=250 mohm/m; G=100 uS/m

Po obciążeniu takiej linii Zk=Z0 otrzymamy jako przebieg linię prostą |Zwe(x)|=Z0.

Ciekawy przypadek wystąpi w linii stratnej dla Zk różnego od Z0. Przykładowo Zk=100ohm (rys.8, na którym widoczne są niewielkie błędy wykreślenia).

Rys.8. |Zwe(x)| przy Zk=100ohm. Parametry linii: Z0=50ohm, stratna 4,3dB/100m (R=250 mohm/m; L=250 nH/m; G=100 uS/m i C=100 pF/m). Widoczne niewielkie błędy wykreślenia przebiegu.

Potwierdza to znany w literaturze fakt stabilizacji Zwe(x) linii długiej wraz ze zwiększeniem się jej tłumienności. Dla linii stratnej mamy też uzależnienie SWR(x) (zmienna obwiednia z rys.8), który maleje wraz ze wzrostem tłumienia oraz x. W istocie, SWR zależy od stosunku fali odbitej do padającej (tzw. współczynnika odbicia), a ten dla linii stratnej jest różny w różnych punktach linii [1].

Wydaje się, że w praktyce korzyść z występowania tłumienia linii jest pozorna, gdyż tracimy też moc. Zatem w dalszym ciągu kluczowy jest SWR w punkcie x = 0 (lub dowolnym x dla linii bezstratnej).

Sprawdźmy jeszcze jaki wpływ na |Zwe| w linii stratnej ma załączenie wymienionej wyżej Zk=30+j40 ohm (|Zk|=Z0=50ohm) - rys.9.

Rys.9. |Zwe(x)| przy Zk=30+j40 ohm (|Zk|=Z0). Parametry linii: Z0=50ohm, stratna 4,3dB/100m (R=250 mohm/m; L=250 nH/m; G=100 umS/m i C=100 pF/m).

Tu również większe tłumienie i długość linii ma korzystny wpływ na stabilizację |Zwe| (zmniejszenie się SWR).

Wnioski ogólne

Wstęp - Linia bezstratna - Linia stratna - Wnioski ogólne - Podsumowanie

Podsumowując rygorystyczny wymóg Zk=Z0 (nie wystarczy równość modułów tych impedancji) należy zauważyć, że:

Przy częstotliwości np. 30MHz przybiera ono postać

Czyli (6), co powoduje w praktyce nieistotność (7) (nie musiałem przyjmować odpowiedniego stosunku R/G, by uzyskać Z0=R0 (i prawdopodobnie fabryki kabli też o ten stosunek nie dbają)). Wynika to z faktu, że wartości R i G są przeważnie dużo mniejsze od odpowiednich XL i BC. Dla wyższych częstotliwości (do pewnej granicy na UKF-ie) powyższe przybliżenie staje się jeszcze bardziej dokładne, a więc charakter Z0 jest w większym stopniu czystą rezystancją.

Ostatecznie otrzymujemy zasadę, że przy spełnieniu w najlepszym razie tylko warunku równości |Zk|=|Z0|, może być konieczny dobór długości przewodu antenowego. Jeśli jednak zrealizujemy równość Zk=Z0, co jest spełnione przy dodatkowym wystąpieniu rezonansu anteny - długość kabla nie ma wpływu na jego impedancję wejściową.

Podsumowanie

Wstęp - Linia bezstratna - Linia stratna - Wnioski ogólne - Podsumowanie

Praktyka "przycinania kabla" wynika z niedopasowania na styku kabel-antena. Dobierając długość kabla (skracanie lub wydłużanie) możemy z punktu widzenia nadajnika, dla jednej częstotliwości znacznie zniwelować to niedopasowanie. Nie wpływamy jednak tym zabiegiem na wielkość SWR, a jedynie na Zwe systemu antenowego, widzianego przez nadajnik.

© Copyright Krzysztof Kolisz SQ8IJZ 2002


[1] "Poradnik radio- i teleelektryka. Elementy i podzespoły", Witold Rosiński w pracy zbiorowej pod redakcją Jerzego Antoniewicza, PWT Warszawa 1959.

 

Strona główna ] W górę ] RWE - mp3 ] Grundig Yacht Boy 80 ] Dobroć, a tłumienie w paśmie zaporowym obw. rezonansowego ] PSK jako następca CW ] Częstotliwości harmoniczne w stopniu przemiany ] [ Impedancja wejściowa linii długiej ] SWR, a straty w linii ] Przekształcenie dipola ] Magik LC ] Tłumik PI ] Radiotechnika KF - Programy ] Radio - Humor ]